Borlaug LEAP Paper

Kosgey Zennah1,2* and Kimani Cyrus1,3

*Lead author email: zennahk@gmail.com

1Kenya Agricultural and Livestock Research Organization, Food Crops Research Centre-Njoro, Kenya
2Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
3Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA

DOI: 10.18697/ajfand.84.BLFB1029
Abstract
Various genetic engineering techniques have been applied to develop genetically modified (GM) crops. These techniques have the greatest potential to address food insecurity and malnutrition problems in developing countries, for example, transgenic techniques have been successful in the development of bio-fortified cassava in Africa. Some techniques such as RNA interference (RNAi), virus induced gene silencing (VIGS) and CRISPR-Cas9 genome editing could also be of great use in developing disease and pest resistant or locally adapted cultivars. The GM crop adoption in Kenya has been hindered by lack of strong legislation structures, lack of knowledge about GM technology among the public and external influences. There is also lack of understanding about what GM crop development entails. There has been some progress in putting in place policies that build institutional capacity and regulate the use and handling of GM crops. These include the National Biotechnology Policy, the Biosafety Act of 2009, and the establishment of the National Biosafety Authority. Although Kenya has made some progress in putting in place legislations, the country is still far from incorporating the GM crops into the food system.

Key words: GM crops, Genetic engineering techniques, GM crop perceptions, Policy issues, Food security
Introduction

Genetic engineering in crops is the manipulation of the deoxyribonucleic acid (DNA) to alter the crop’s characteristic (phenotype) using modern biotechnology techniques such as genome editing, RNA interference (RNAi), virus induced gene silencing (VIGS) among others resulting to what is referred to as genetically modified (GM) crop. Gene manipulation can be done either through insertion or deletion of genes, change of gene structure or gene doubling (Karthiskeyan et al., 2013; Vincelli, 2016). There are four categories of genetic engineering depending on the gene manipulation event or technique: (1) cisgenic-the inserted gene in a crop comes from a member of the same species, for example, a gene of wheat origin inserted into a wheat variety, (2) intragenic-the inserted gene comes from a member of a different but close species, for instance, from barley to wheat, (3) transgenic-the inserted gene is from a different species, for example, the inserted gene in Bt (Bacillus thuringiensis) maize came from the Bacillus thuringiensis bacterium, (4) subgenic-the crop’s gene is manipulated in vitro without inserting any new gene for example, gene deletion using genome editing techniques (Sticklen, 2015). Most of the gene insertion events are done using bacterial sequences which can deliver genes into the plant genome (Ramadevi et al., 2014). Genome editing is currently not considered transgenic because it does not leave any foreign DNA sequences in the crop, making the crop improvement process more efficient either by complementing or substituting the conventional breeding methods (Sharma et al., 2002).

Can GM crops curb food insecurity and malnutrition problems?

The genetic engineering techniques such as RNAi, VIGS and genome editing are efficient and have the potential to address current challenges in developing countries such as malnutrition (through biofortification), pests and diseases, abiotic stresses and shelf life on staple food crops such as cassava (Manihot esculenta), sweet potatoes (Ipomoea batatas), maize (Zea mays), rice (Oryza sativa) and wheat (Triticum aetivum) (Sharma et al., 2002). The debate on whether agricultural biotechnology techniques especially genetic modification can enhance food security, reduce poverty and improve human development is still contributing to delays in most African countries to embrace the new technologies (Singh et al., 2006).

Some studies have demonstrated the potential of genetic engineering techniques in eliminating or minimizing malnutrition problems as well as biotic and abiotic threats on cassava, sweet potatoes, maize, rice and wheat (Collinge et al., 2008; Duan et al., 2012; Wang et al., 2014; Wang et al., 2016; Shi et al., 2017). Cassava and sweet potatoes are traditional crops which are often termed as ‘orphan crops’ because for many years, not much attention has been paid to them although currently, there is more research on these crops (Anderson, 2018). These crops which are highly consumed in Africa lack essential nutrients leaving most consumers malnourished (Muthoni and Nyamongo, 2010). However, these ‘orphan crops’ have better tolerance to abiotic stresses such as drought and are therefore cost effective to produce. The main threats to these crops are viral diseases, whose current effective control measure is the complete elimination of infected plants, posing a food security threat to most resource poor farmers who depend on these crops as their daily meal and their main source of income (Mukhopadhyay et al., 2011; Gibson et al., 2014; Adikini et al., 2016). Genetic engineering techniques
such as RNAi and genome editing are among the most promising approaches in eliminating or minimizing the threats by viral diseases as well as improving the nutritional quality of these crops (Tepfer, 1993; Bart and Taylor, 2017).

Some of the drawbacks in cassava as a crop are being addressed by the Bio Cassava plus (BC+) program. This program was established as one of the GC-9 projects under the Grand Challenges in Global Health (GCGH) program funded by Bill and Melinda Gates Foundation and its main objective was to address malnutrition problems in Sub-Saharan Africa by developing staple food crops that are more nutritious. The program also focuses on developing cassava crops with reduced cyanogen, increased shelf life and resistance to viral diseases using modern biotechnology techniques (Takeshima, 2010; Sayre et al., 2011). The use of these techniques on the ‘traditional’ cassava crop led to an improved ‘biofortified’ cassava which was rich in nutrients such as iron, protein, vitamin A and zinc, resistant to viral diseases and with a longer shelf life compared to the traditional unimproved varieties (Sayre et al., 2011).

Sweet potato has also been improved using genetic engineering techniques like gene silencing (Kreuze et al., 2008). Currently, there are two varieties of sweet potatoes; white-fleshed and orange-fleshed. The former is vitamin A deficient while the latter (biofortified) has beta-carotene which is used by the body in producing vitamin A (Muthoni and Nyamongo, 2010). Despite the importance of the crop especially to small scale farmers, its production is mainly threatened by viral diseases such as Sweet potato feathery mottle virus (SPFMV), Sweet potato mild mottle virus (SPMMV), Sweet potato virus G (SPVG), Sweet potato chlorotic stunt virus (SPCSV), Sweet potato latent virus (SPLV), Sweet potato caulimo-like virus (SPCV), Sweet potato ring spot virus (SPRSV) and Cucumber mosaic virus (CMV). Some of these diseases can cause up to 98% yield loss, either individually or in combination posing a threat to food security (Karyeija et al., 1998; Ngailo et al., 2013; Gibson et al., 2014; Adikini et al., 2016). These diseases are difficult to control using biological or chemical measures, therefore planting resistant cultivars remains the most effective control measure. A transgenic sweet potato cultivar ‘Blesbok’ developed in South Africa using the gene silencing technique to target the coat protein genes of the SPFMV, SPCSV, SPVG and SPMMV was found to have some level of resistance to these viral diseases compared to the conventional cultivars (Sivparsad and Gubba, 2014). This study is a good example of how genetic engineering could solve the complex disease menace in one of Africa’s food security crops.

Maize, another staple food crop, is currently threatened mainly by pests and disease such as stem borers, fall armyworm and maize lethal necrosis (MLN) (De Groote, 2002; Mahuku et al., 2015; KALRO, 2018). The problem caused by stem borers on maize led to the development of Bt maize that produces insecticidal proteins providing resistance to African stem borer (Busseola fusca) and the Chilo borer (Chilo partellus) (Fischer et al., 2015). Currently in Kenya, fall armyworm is a big threat to maize production and Bt maize has the potential of reducing the losses due to the pest damage. However, in Africa it is only South Africa that has commercialized Bt maize production, mainly due to biosafety regulations and public perception issues in other countries. Despite its commercialization in South Africa, Bt maize production by
smallholder farmers has been reported to be faced by a couple of challenges. First, the resource poor smallholder farmers cannot afford to maintain the recommended conditions for Bt maize production such as using the recommended fertilizer rates and providing good storage conditions. Secondly, rainfall fluctuations have led to higher yields from the locally adapted non-GM maize hybrids and the open pollinated varieties (OPVs) compared to the Bt maize, due to their local adaptation. Thirdly, the regulations that accompany planting of Bt crop such as complying with the biosafety management practices and the need of buying Bt maize seeds every season discouraged most smallholder farmers, who opted for the non-GM hybrids and OPVs (Fischer et al., 2015).

Genetically modified crops also have the potential to address some major health issues through disease prevention, a few examples being Bt maize and transgenic rice (rice-based oral antibody). Bt maize has the potential to reduce risks of fumonisin, a carcinogenic toxin produced by the Fusarium fungi ending up in the food chain (Clements et al., 2003; Hammond et al., 2004; IFRI, 2013). One of the predisposing factors to Fusarium infection is the damage created on maize kernels by stalk borers. Fumonisin is known to cause esophageal cancer and it was found in high concentration in non-Bt maize, whereas the Bt-maize had significantly lower levels (IFRI, 2013). In Kenya, rotavirus infections have been reported to account for high mortality rate in children below 5 years (Tate et al., 2009). A rice-based oral antibody produced through genetic engineering was found to provide immunity against rotavirus infection (Tokuhara et al., 2013). This rice-based antibody could be useful in reducing the rotavirus health burden, hence saving lives, money and time spent on hospital visitations.

These important and insightful studies underscore the importance of GM crops adoption in Africa. However, this cannot happen given the prevailing negative public perceptions surrounding the GM crops coupled with lack of suitable policies regarding adoption of such crops.

Table1: Examples of GM crops and their potential benefits

<table>
<thead>
<tr>
<th>GM Crop</th>
<th>Potentials benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bt cotton</td>
<td>Reduced crop losses hence increased economic gains</td>
</tr>
<tr>
<td>Bt maize</td>
<td>Reduced mycotoxin contamination in food</td>
</tr>
<tr>
<td>Rotavirus vaccine complemented</td>
<td>Reduced child mortality due to reduced rotavirus infections</td>
</tr>
<tr>
<td>Golden rice</td>
<td>Increased nutritional value, specifically vitamin A</td>
</tr>
<tr>
<td>Virus resistant sweet potato</td>
<td>Reduced crop losses and increased tuber marketability</td>
</tr>
<tr>
<td>Bio-fortified cassava</td>
<td>Increased nutritional value e.g. iron, protein, vitamin A and zinc</td>
</tr>
</tbody>
</table>

Public perceptions and factors hindering adoption of GM crops

Genetically modified crops have generated considerable debate and controversy which has led to most African countries banning their use and importation (Nang’ayo, 2012).
GM crops can be judged using two principles; (i) principle of substantial equivalence, and (ii) precautionary principle (Myhr and Traavik, 2012). The principle of substantial equivalence uses scientific evidence to ascertain the safety of GM crops, while the latter is based solely on a pessimistic bias towards such crops. Adoption of GM crops by most African countries has been hindered by several factors, miscommunication being the biggest. Most people do not have scientific knowledge about GM crops and therefore have a wrong perception about them (Ezezika et al., 2012). This is further compounded by the fact that most scientists do not engage the public on issues concerning GM crops, therefore leading to non-scientific public debates hence the misconception about these crops. The situation is worsened often by leaders and policy makers who without clear information about GM crops pass on the wrong perception to the public. This has been observed often whenever there is a public debate over GM crops with such debates being skewed towards the precautionary principle and totally ignoring the principle of substantial equivalence. In addition, due to shortage of extension officers who can easily reach many farmers in the villages, farmers cannot access detailed/clear information about GM crops (Ezezika et al., 2012). The negative campaign by some non-governmental organizations and anti-GM groups have also contributed to the increased negative perception about GM crops by the public. However, the delays in development and implementation of biosafety regulations supposed to govern GM crops in most African countries could be hindering the acceptance and commercialization of the crops.

It is also thought that the development of GM crops in developed countries could be contributing to their slow adoption by African communities. This is because some people think that the developed countries take advantage of African countries through their innovations, and that the adoption could be faster if the GM crops were locally developed (Ezezika et al., 2012). Some government research institutions, non-governmental organizations (NGOs) and seed companies are against research done by some private companies especially concerning the GM crops and this to an extent, increases the public’s negative perception about the crops. Another barrier to the adoption of GM crops is culture, for example, women in most African communities are farmers, whereas men take up other careers and are mainly the decision makers in their families. Even though women could be willing to fully adopt GM crops, their men could be the barriers due to the misconceptions about the crops.

Government policies

Kenya has made some progress in putting in place policies and institutional capacity to regulate the use and handling of GM crops. This is through passing some legislations like the National Biotechnology Policy and the Biosafety Act of 2009, the latter laying the foundation for the establishment of the National Biosafety Authority. Although some progress has been made, the country is still far from allowing the incorporation of GM crops into the food system. This is evident by the fact that only a few confined field trials of GM crops such as Bt maize and Bt cotton have been approved.

External influence has had an impact on government policies. For example, allowing some of the confined field trials to be carried out was apparently due to pressure from some funding agencies and biotechnology companies (Ecowatch, 2016). Another
external influence is mainly due to the negative policies of the European Union (EU) towards GM crops. The EU is one of the biggest markets for Kenyan horticultural produce and therefore any policies or attitudes on the part of the EU has a direct impact on Kenyan policies concerning GM crops (Ecowatch, 2015; Daily Nation, 2015).

Concerns about GM crops

Despite the proposed paradigm shift from the non-GM to GM crops, there are several concerns about these crops. Some GM crops have been developed to have a broad-spectrum resistance to herbicides (Duke, 1998). The first herbicide resistant GM crops were bromoxynil-resistant cotton and glufosinate-resistant canola introduced in 1995 (Duke, 2014). These crops can withstand heavy use of herbicides as a way of protecting them from herbicides used to control weeds. This, however encourages excessive use of herbicides which might have unintended harmful effects on other plants and organisms in the ecosystem (Van Bruggen et al., 2018). Moreover, some weeds have developed herbicide resistance probably due to the heavy usage of herbicides. There are also concerns about transfer of herbicide resistance genes among or within species and this has been demonstrated in canola fields (Rieger et al., 2002). However, herbicide resistance in weeds is not attributable only to GM crops as it had been documented even before the introduction of herbicide resistant GM crops (Holt and Lebaron, 1990).

The potentially adverse effects of Bt crops on non-target organisms is another issue of concern (Robinson, 1996; O’Callaghan et al., 2005). Some studies have documented adverse effects on non-target organisms especially *Lepidoptera* species like monarch butterfly larvae (Losey et al., 1999; Hansen and Obrycki, 2000). However, a study by Saxena and Stotzky (2001) showed that a toxin released from root exudates and biomass of Bt corn had no effect on bacteria, fungi, protozoa, nematodes and earthworms. Another concern is the evolution of super resistant pests that can overcome the resistance in the transgenic plants (Peferoen, 1997). Some studies have conducted laboratory induced resistance to Bt crops though there is evidence of field-evolved resistance in the pink bollworm, which mainly attacks cotton (Dhurua and Gujar, 2011).

The allergenicity of GM products is another concern raised since some gene modifications result into the production of new proteins in the crop. There is a documented study on patients having allergic reaction to a protein transferred from brazil-nut to soybean (Nordlee et al., 1996; Bansal et al., 2007). Allergenicity tests should be done on the introduced proteins just to make sure that there are no adverse effects on the human body (Taylor and Hefle, 2001).

In addition, there are concerns that the GM crops are likely to contaminate the non-GM crops (for those not willing to plant GM crops), through cross-pollination, and this could even lead to restriction of exports of the produce. There is also a concern about high probabilities of gene flow from GM crops to other non-GM plants leading to genetic contamination.
There are many pertinent questions to consider as many African countries are under pressure to adopt the GM crops; are the governments, potential crop producers, food industries, and testing laboratories ready to accurately test GM crops, foods and food ingredients to comply with biosafety regulations? Can they afford the appropriate facilities and equipment to carry out tests or analysis? Do they have the expertise? Despite the pressure for developing countries to adopt GM crops, care must be taken to maintain safety for human health and the environment.

In conclusion, as the push for GM crops adoption continues, we must maintain a sober debate based on the principle of substantial equivalence. Regulatory measures should be heightened to ensure complete safety assessment of the GM crops before their commercialization.
References

